Let \(f(n)\) denote the number of positive integers \(x\) such that \(n+x\) divides \(n \cdot x\).
For a given positive integer \(n\), calculate the sum of \(f(i)\)'s for each positive integer \(i\) from \(1\) to \(n\), that is, \(f(1) + f(2) + \dots + f(n)\).
Input
The only line contains one integer, \(n\).
- \(1 \le n \le 10^5\)
Output
Print \(f(1) + f(2) + \dots + f(n)\).
Example
Input 1:
1
Output 1:
0
Input 2:
6
Output 2:
9
Explanation
Input 1: For any positive integer \(x\), \(1 \cdot x\) is smaller than \(1 + x\). Thus, \(f(1) = 0\).
Input 2:
- \(f(1) = 0\)
- \(f(2) = 1 \quad (x = 2)\)
- \(f(3) = 1 \quad (x = 6)\)
- \(f(4) = 2 \quad (x = 4, 12)\)
- \(f(5) = 1 \quad (x = 20)\)
- \(f(6) = 4 \quad (x = 3, 6, 12, 30)\)