Product Divisible by Sum

Time Limit: 1.5s **Memory Limit:** 256M

Let f(n) denote the number of positive integers x such that n+x divides $n\cdot x$.

For a given positive integer n, calculate the sum of f(i)'s for each positive integer i from 1 to n, that is, $f(1)+f(2)+\cdots+f(n)$.

Input

The only line contains one integer, n.

• $1 \le n \le 10^5$

Output

Print $f(1) + f(2) + \cdots + f(n)$.

Example

Input 1:

1

Output 1:

0

Input 2:

6

Output 2:

9

Explanation

Input 1: For any positive integer x, $1\cdot x$ is smaller than 1+x. Thus, f(1)=0 .

Input 2:

- f(1) = 0

- f(1) = 0• f(2) = 1 (x = 2)• f(3) = 1 (x = 6)• f(4) = 2 (x = 4, 12)• f(5) = 1 (x = 20)• f(6) = 4 (x = 3, 6, 12, 30)