Ozan is a fantastic person and loves the number 3 very much. Since he loves the number 3 very much, he gives the name fantastic number to the numbers can be constructed only with different powers of 3 .

- 3 is a fantastic number. $\left(\mathbf{3}=\mathbf{3}^{\mathbf{1}}\right)$
- 13 is a fantastic number. $\left(\mathbf{1 3}=\mathbf{3}^{\mathbf{2}}+\mathbf{3}^{\mathbf{1}}+\mathbf{3}^{\mathbf{0}}\right)$
- 1 is a fantastic number. $\left(\mathbf{1}=\mathbf{3}^{\mathbf{0}}\right)$
- 6 is not a fantastic number, because it can't be constructed using only different powers of 3 . $\left(6=3^{1}+3^{1}=3^{1}+3^{0}+3^{0}+3^{0}\right)$
- 26 is not a fantastic number. $\left(\mathbf{2 6}=\mathbf{3}^{\mathbf{2}}+\mathbf{3}^{\mathbf{2}}+\mathbf{3}^{\mathbf{1}}+\mathbf{3}^{\mathbf{1}}+\mathbf{3}^{\mathbf{0}}+\mathbf{3}^{\mathbf{0}}\right)$
- 0 is not a fantastic number, becase it can't be written using any of the powers of 3 .

Although Ozan loves fantastic numbers, he doesn't know how many are there. He wants your help to find how many fantastic numbers there are.

Ozan gives you \mathbf{n} many numbers and wants to know the number of fantastic numbers less than or equal to that number.

Input

The first line only consists of the number \mathbf{n}.
Each of the next \mathbf{q} lines include an element of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$.

Batch \#1:

- $1 \leq \mathbf{n} \leq 100$
- $1 \leq \mathbf{a}_{\mathbf{i}} \leq 10^{5}$

Batch \#2:

- $1 \leq \mathbf{n} \leq 500$
- $1 \leq \mathbf{a}_{\mathbf{i}} \leq 10^{18}$

Output

In \mathbf{n} lines, print the number of fantastic numbers smaller than or equal to $\mathbf{a}_{\mathbf{i}}$ in the \mathbf{i} 'th line.

Samples

Input:

Output:

1
3
6

Input:

1
100000

Output:

```
2047
```


Explanation

1. Input

- All the fantastic number to number $2\left\{\mathbf{1}=\mathbf{3}^{\mathbf{0}}\right\}$.
- All the fantastic number to number $5\left\{\mathbf{1}=\mathbf{3}^{\mathbf{0}}, \mathbf{3}=\mathbf{3}^{\mathbf{1}}, \mathbf{4}=\left(\mathbf{3}^{\mathbf{1}}+\mathbf{3}^{\mathbf{0}}\right)\right\}$.
- All the fantastic number to number 12 $\left\{1=3^{0}, 3=3^{1}, 4=\left(3^{1}+3^{0}\right), 9=3^{2}, 10=\left(3^{2}+3^{0}\right), 12=\left(3^{2}+3^{1}\right\}\right.$.

