Ebru's New Language

Time Limit: 1.0s Memory Limit: 256M

Ebru wants to create a new language. They create every word from their alphabet consisting of \mathbf{M} symbols and each word contains at least 1 letter. Also for ease of use, they limit the length of every word to be at most \mathbf{N}.

But Ebru's language has some rules. Every symbol \mathbf{i} in the alphabet has a limit of consecutive occurrences $\mathbf{A}_{\mathbf{i}}$. Which means if symbol $\mathbf{i}=\mathbf{a}$ has a value $\mathbf{A}_{\mathbf{i}}=2$, it cannot repeat consecutively, meaning that a word can include a or aa but cannot include aaa.

Ebru wonders how many words are there in their new language. Can you help them find out?

Input

First-line consists of two space-separated integers \mathbf{N} and \mathbf{M}, the upper limit for word length and number of symbols in the alphabet respectively.

Next \mathbf{M} lines have values of $\mathbf{A}_{\mathbf{i}}$, where each $\mathbf{A}_{\mathbf{i}}$ is the upper limit of consecutive occurrence for \mathbf{i} th symbol.

Batch \#1:

- $1 \leq \mathbf{N}, \mathbf{M} \leq 100$
- $1 \leq \mathbf{A}_{\mathbf{i}} \leq \mathbf{N}$

Batch \#2:

- $1 \leq \mathbf{N}, \mathbf{M} \leq 500$
- $1 \leq \mathbf{A}_{\mathbf{i}} \leq \mathbf{N}$

Output

Count of words in the language. Since this count can be huge, you need to take the modulo $10^{9}+7$ before printing it.

Examples

Input:

```
3 3
1
2
3
```

Output:

```
32
```

Input:

```
5
```

1
2

Output:

21

Explanation

1st Input

Let's say the symbols are \mathbf{a}, \mathbf{b} and \mathbf{c} respectively:

- a can consecutively occur at most 1 ,
- b can consecutively occur at most 2,
- c can consecutively occur at most 3 times.

In this case, number of words of length 1 is $1 .(\mathbf{a}, \mathbf{b}, \mathbf{c})$
Number of words of length 2 is 8 . ($\mathbf{a b}, \mathbf{a c}, \mathbf{b a}, \mathbf{b b}, \mathbf{b c}, \mathbf{c a}, \mathbf{c b}, \mathbf{c c}$)
Number of words of length 3 is 21 . (aba, abb, abc, bab, ...)

2nd Input

Let's say the symbols are \mathbf{a}, \mathbf{b} and \mathbf{c} respectively:

- a can consecutively occur at most 1 ,
- b can consecutively occur at most 2 times.

In this case, number of words of length 1 is $1 .(\mathbf{a}, \mathbf{b})$
Number of words of length 2 is 3 . ($\mathbf{a b}, \mathbf{b a}, \mathbf{b b}$)
Number of words of length 3 is 4. (aba, abb, bab, bba)
Number of words of length 4 is 5 . (abab, abba, babb, baba, bbab)
Number of words of length 5 is 7. (ababa, ababb, abbab, babab, babba, bbaba, bbabb)

