Editorial for Problem About Base
Remember to use this editorial only when stuck, and not to copy-paste code from it. Please be respectful to the problem author and editorialist.
Submitting an official solution before solving the problem yourself is a bannable offence.
Submitting an official solution before solving the problem yourself is a bannable offence.
tr
Soruda belirtilen \(a\) dizisini şu şekilde bulabiliriz;
- \(\mathbf{a_0} = \lfloor \frac{N}{K^0} \rfloor \mod K\)
- \(\mathbf{a_1} = \lfloor \frac{N}{K^1} \rfloor \mod K\)
- ...
- \(\mathbf{a_{m-1}} = \lfloor \frac{N}{K^{m-1}} \rfloor \mod K\)
- \(\mathbf{a_{m}} = \lfloor \frac{N}{K^{m}} \rfloor \mod K\)
Soruda bulduğumuz \(a\) dizisini tersi isteniyor.
en
We can find the series \(a\) specified in problem description as follows;
- \(\mathbf{a_0} = \lfloor \frac{N}{K^0} \rfloor \mod K\)
- \(\mathbf{a_1} = \lfloor \frac{N}{K^1} \rfloor \mod K\)
- ...
- \(\mathbf{a_{m-1}} = \lfloor \frac{N}{K^{m-1}} \rfloor \mod K\)
- \(\mathbf{a_{m}} = \lfloor \frac{N}{K^{m}} \rfloor \mod K\)
The problem simply asks the reverse of the series \(a\).
#include <bits/stdc++.h>
using namespace std;
long long n, k, t, arr[300005];
int main(){
cin>>t;
while(t--){
cin>>n>>k;
int i=0;
while(n){
arr[i]=n%k;
n/=k;
i++;
}
while(i--) cout<<arr[i];
cout<<endl;
}
}