Circles on a Plane

Time Limit: 1.0s Memory Limit: 256M
n circles are placed in a $2 D$ plane, with radii $r_{1}, r_{2}, \ldots, r_{n}$ and centers $O_{1}, O_{2}, \ldots, O_{n}$ such that these circles all intersect at a common point P, no arrangement of the set $\left(O_{j}, O_{i}, P\right)$ is linear and $r_{i} \neq r_{j}$, for all i, j satisfying $0 \leq i \leq n, 0 \leq j \leq n$ and $i \neq j$. Given the integers $m_{3}, m_{4}, m_{5}, \ldots, m_{n-1}$, where m_{k} is the number of points in the plane where k circles intersect, find the number of sections these circles divide the whole plane into.

Example: If $n=9$ and $m_{3}=0, m_{4}=2, m_{5}=0, m_{6}=1, m_{7}=0, m_{8}=0$, this means there are 9 circles all sharing a common point P and there are 2 distinct point such that 4 circles intersect and 1 point such that 6 circles intersect. At the other intersections, only 2 circles intersect.

Input

The first line contains the number n and the subsequent lines contain $m_{3}, m_{4}, m_{5}, \ldots, m_{n-1}$.

- $5 \leq n \leq 10^{7}$
- $0 \leq m_{j} \leq 10^{5}$

Output

Print the total number of distinct sections formed by these circles on the plane.

Example 1

Input:

5
1
0

Output:

15

Example 2

Input:

Output:

40

Explanation

Input 1: Here's a way to construct 5 circles that all intersect at the point P, and a point B where 3 circles intersect. If we count the number of sections in the entire plane, we can see there are 15 sections.

Input 2: Here's a way to construct 10 circles that all intersect at the point P, a point B, C where 4 circles intersect and a point D where 6 circles intersect. If we count the number of sections in the entire plane, we can see there are 40 sections.

