Time Limit: 1.0s Memory Limit: 256M

n circles are placed in a 2D plane, with radii r_1, r_2, \ldots, r_n and centers O_1, O_2, \ldots, O_n such that these circles all intersect at a common point P, no arrangement of the set (O_j, O_i, P) is linear and $r_i \neq r_j$, for all i, j satisfying $0 \le i \le n$, $0 \le j \le n$ and $i \ne j$. Given the integers $m_3, m_4, m_5, \ldots, m_{n-1}$, where m_k is the number of points in the plane where k circles intersect, find the number of sections these circles divide the whole plane into.

Example: If n = 9 and $m_3 = 0, m_4 = 2, m_5 = 0, m_6 = 1, m_7 = 0, m_8 = 0$, this means there are 9 circles all sharing a common point P and there are 2 distinct point such that 4 circles intersect and 1 point such that 6 circles intersect. At the other intersections, only 2 circles intersect.

Input

The first line contains the number n and the subsequent lines contain $m_3, m_4, m_5, \ldots, m_{n-1}$.

- $5 \leq n \leq 10^7$
- $0 \le m_j \le 10^5$

Output

Print the total number of distinct sections formed by these circles on the plane.

Example 1

Input:

5			
1			
0			

Output:

. –			
15			

Example 2

Input:

10	
0	
2	
Θ	
1	
Θ	
Θ	
Θ	

Output:

40

Explanation

Input 1: Here's a way to construct 5 circles that all intersect at the point P, and a point B where 3 circles intersect. If we count the number of sections in the entire plane, we can see there are 15 sections.

Input 2: Here's a way to construct 10 circles that all intersect at the point P, a point B, C where 4 circles intersect and a point D where 6 circles intersect. If we count the number of sections in the entire plane, we can see there are 40 sections.