Work Stealing

Time Limit: 3.0s **Memory Limit:** 256M

Work stealing is a scheduling strategy for multithreaded computer programs. It solves the problem of executing a dynamically multithreaded computation. In a work stealing scheduler, each processor has a queue of work items to perform. Each work item consists of a series of instructions to be executed sequentially and those instructions are prerequisite of each other.

Let’s say you want to implement your own scheduler. You are given n prerequisite pairs i, j which means that you must execute instruction j before instruction i. You are asked to find a way to execute every instruction in the prerequisite list.

Input

The first line contains one integer, n — the number of prerequisites.

Each of the next n lines contain two integers i and j, meaning that instruction j must be executed before instruction i.

- $1 \leq i, j \leq 1000$
- $i \neq j$

All the pairs i, j are distinct.

There is no cyclic dependency between instructions.

Output

First, print the number of instructions to execute, m.

Afterwards, print m integers representing the indices of the instructions to execute from first to last.

Example

Input 1:

```
1
2 7
```

Output 1:
Input 2:

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1</td>
</tr>
<tr>
<td>3 1</td>
</tr>
<tr>
<td>4 2</td>
</tr>
<tr>
<td>4 3</td>
</tr>
</tbody>
</table>

Output 2:

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Explanation

Input 1: There are 2 instructions to execute, and to execute instruction 2 scheduler should execute instruction 7. So the correct course order is 7 2.

Input 2: There are 4 instructions to execute, and to execute instruction 4, scheduler should execute instruction 2 and instruction 3. Both instruction 2 and instruction 3 should also be executed after instruction 1. So, one correct order is 1 2 3 4. 1 3 2 4 is also acceptable.