Stone Piles

Time Limit: 2.0s Memory Limit: 256M

There are n stone piles. Initially, the i-th pile contains a_{i} stones.
Consider a set of ranges $\left[L_{i}, R_{i}\right]$. For each range, you put one stone into every pile in that range.
A range set is called nice if it satisfies two conditions:

- after you put all stones according to the ranges, each pile will contain K stones,
- there are no nested ranges (i.e. no i, j such that $L_{i} \leq L_{j} \leq R_{j} \leq R_{i}$).

How many different nice sets are there? Two sets are considered different if one of them contains a range that is not present in another one.

Input

The first line contains two integers N and K denoting the number of piles and the desired number of stones in each pile. The second line contains N integers a_{i} which are the initial pile sizes.

- $1 \leq N \leq 10^{5}$
- $1 \leq K \leq 10^{9}$
- $1 \leq a_{i} \leq 10^{9}$

Output

Print the number of nice sets modulo $10^{9}+7$.

Example

Input 1:

```
6
2 123 2 2
```


Output 1:

Explanation

Input 1: Nice sets in the sample are $([1,2],[2,3],[5,6])$ and $([1,2],[2,3],[5,5],[6,6])$.

