Professor EHENG is a well known architect, known for his works in modern architecture as well as art. For his latest work, he decided to create a one of a kind staircase for the computer engineering building. On his way to grab a coffee during a visit to the building, he suddenly realizes that he lost his blueprint for this unique staircase. He can only remember the dimensions of the staircase, and has access to an e-mail written by one of his students discussing a special property of the blueprint. Can you help Professor EHENG remember this masterpiece?

The staircase can be described as an array \mathbf{B} with integer elements representing the height of the steps.
\mathbf{B} has length \mathbf{N} and height \mathbf{H} as its dimensions. It is known to have elements between $\mathbf{1}$ and \mathbf{H} inclusively. Therefore, the height dimension \mathbf{H} both describes the height and the maximum element of \mathbf{B}.

The special property $\mathbf{S P}$ is given as an array consisting of \mathbf{N} numbers, and can be built from the blueprint \mathbf{B} by following the pattern below:
$\mathbf{S P}_{\mathbf{i}}=\sum_{j=0}^{i-1}\left(1\right.$ if $\mathbf{B}_{\mathbf{j}} \leq \mathbf{B}_{\mathbf{i}}$ else 0$)$
Informally, it can be said that each index i of $\mathbf{S P}$ counts the number of elements in the subarray $\mathbf{B}_{\mathbf{0}}, \mathbf{B}_{\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{i}-\mathbf{1}}$ smaller than or equal to $\mathbf{B}_{\mathbf{i}}$.

It is guaranteed that with the given dimensions, the staircase will be unique. Thus, \mathbf{B} cannot be constructed if all $\mathbf{B}_{\mathbf{i}}<\mathbf{H}$.

Input

The first line contains a single number \mathbf{T}, the number of test cases.
Then for each test case, the following input is given:
For the first line of the current test case, the dimensions of the special property array $\mathbf{S P}$ is given as two numbers \mathbf{N} and \mathbf{H}, \mathbf{N} denoting the length of both the array $\mathbf{S P}$ and \mathbf{B}; and \mathbf{H} denoting the height of the array \mathbf{B}.

The next line of the current test case consists of \mathbf{N} integers, the elements of $\mathbf{S P}$.

- $1 \leq \mathbf{H} \leq \mathbf{S P}_{\mathbf{i}} \leq \mathbf{N} \leq 10^{5}$
- $1 \leq \mathbf{B}_{\mathbf{i}} \leq \mathbf{H}$

It is guaranteed that the total number of elements in all the test cases won't exceed 10^{5}.

Output

For each test case, print the elements of the staircase array \mathbf{B} that is unique to the conditions of the test case's \mathbf{H} and $\mathbf{S P}$ values.

Examples

Input 1:

```
1
6}
0 1 2 1 2 3
```

Output 1:

122111

Input 2:

```
2
5 3
0 1 1 3 1
6 3
0 0 1 0 3 4
```


Output 2:

13231
322122

Explanation

Input 1: The special property array $\mathbf{S P}$ can be constructed from the staircase array \mathbf{B} like so:
$\mathbf{S P}_{\mathbf{0}}=0$ from $\mathbf{B}=[\underline{1},-,-,-,-,-]$
$\mathbf{S P}_{\mathbf{1}}=1$ from $\mathbf{B}=[\mathbf{1}, \underline{2},-,-,-,-]$
$\mathbf{S P}_{\mathbf{2}}=2$ from $\mathbf{B}=[\mathbf{1}, \mathbf{2}, \underline{2},-,-,-]$
$\mathbf{S P}_{\mathbf{3}}=1$ from $\mathbf{B}=[\mathbf{1}, 2,2, \underline{1},-,-]$
$\mathbf{S P} \mathbf{4}_{4}=2$ from $\mathbf{B}=[\mathbf{1}, 2,2, \mathbf{1}, \underline{1},-]$

$\mathbf{S P} \mathbf{5}_{5}=3$ from $\mathbf{B}=[\mathbf{1}, 2,2, \mathbf{1}, \mathbf{1}, \underline{1}]$

Above, the underline signifies the current index being processed, whereas the bold is used to describe the elements that are smaller than or equal to the element being processed.

