Polynomial Calculator

Time Limit: $1.5 \mathrm{~s} \quad$ Memory Limit: 256M

You are given a polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}$ of degree m. In addition, you will have n real numbers x_{1}, \ldots, x_{n}. You need to calculate $p\left(x_{i}\right)$ for each $i \in\{1, \ldots n\}$.

However, evaluating a polynomial gets more complex as its degree increases. Therefore you must use an approximation whenever it is possible.

To approximate $p(x)$, you will compute $T(x)=p\left(x_{0}\right)+p^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{p^{\prime \prime}\left(x_{0}\right)}{2} \cdot\left(x-x_{0}\right)^{2}$, where $\left|x-x_{0}\right|<\epsilon=10^{-3}$. x_{0} can be any of the previous queries, for which you already directly computed the polynomial.

Input

The first line contains two integers, m and n.
The next line contains $m+1$ real numbers, which are polynomial coefficients. The first one is a_{0} and the last one is a_{m}.

The last line contains n real numbers which correspond to query points where $p(x)$ will be evaluated.

- $0 \leq m \leq 5 \cdot 10^{4}$
- $1 \leq n \leq 5 \cdot 10^{4}$
- $a_{m} \neq 0$
- $\left|a_{i}\right| \leq 100$
- $\left|x_{i}\right|<0.5$
- a_{i} and x_{i} will not be more precise than 10^{-4}

Output

Print the answer of each query with spaces in-between on the same single line and in the given order. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6}. Formally, let your answer be a and the jury's answer b. Your answer will be considered correct if $\frac{|a-b|}{\max (1,|b|)} \leq 10^{-6}$.

Example

Input 1:

```
2 3
10.53
0 0.1 0.0001
```

Output 1:
11.081 .00005

Input 2:

23
111
0.10 .10010 .0999

Output 2:
1.111 .110121 .10988

Input 3:

23
111
0.10 .10050 .101

Output 3:
1.111 .11061 .111201

Explanation

Input 1: $p(x)=1+0.5 x+3 x^{2}$
First two queries $p(0)$ and $p(0.1)$ are computed directly. We can approximate
$p(0.0001) \approx T(0.0001)=p(0)+p^{\prime}(0) \cdot(0.0001-0)+\frac{p^{\prime \prime}(0)}{2} \cdot(0.0001-0)^{2}$.
Input 2: The first query is directly calculated. The second and third ones are approximated.

Input 3: The first query is directly calculated. The second one is approximated. The third one is directly calculated.

