Time Limit: 2.0s Memory Limit: 256M

Şehmettin Ltd. Co. is in the interstellar titanium transportation business. They rent spaceships that can carry $\mathbf{K} \, \mathbf{m}^3$ of titanium. The company only produces rectangular prism shaped titanium blocks of size $\mathbf{X} \times \mathbf{Y} \times \mathbf{Z}$. So, to transport titanium, you may need to cut the titanium block multiple times.

In one move you can cut the titanium block either from width, length or height into 2 titanium blocks. The dimensions of newly created titanium blocks must be integers (e.g. a $[5 \times 6 \times 7]$ block might be cut into $[5 \times 2 \times 7]$ and $[5 \times 4 \times 7]$ sized 2 blocks, but it cannot be cut into $[5 \times 1.5 \times 7]$ and $[5 \times 4.5 \times 7]$ sized 2 blocks). However, titanium is a hard metal to cut; therefore, the cost of cutting the titanium block is the square of cut surface area (e.g. if a $[5 \times 6 \times 7]$ sized block is cut into $[5 \times 2 \times 7]$ and $[5 \times 4 \times 7]$ sized 2 blocks its cutting cost will be $(5 \times 7)^2 = 1225$).

Your job as an employee of Şehmettin Ltd. Co. is to find the minimum total cost of cutting titanium blocks for given ${f X}$, ${f Y}$, ${f Z}$ and ${f K}$ values.

The ship can transport multiple titanium blocks but the total volume of the blocks should be \mathbf{K} .(e.g. if the initial block is $[2 \times 2 \times 2]$ sized and if \mathbf{K} is 5, the ship can either transport 1 $[2 \times 2 \times 1]$ block with a $[1 \times 1 \times 1]$ block or it can transport 5 $[1 \times 1 \times 1]$ blocks)

The remaining $(X \times Y \times Z - K) m^3$ of titanium does not necessarily form a single rectangular prism.

Input

- The first line contains ${\bf 1}$ integer, ${\bf T}\colon$
 - $\circ \ 1 \leq {f T} \leq 10^4$, The number of test cases.
- Each one of the \mathbf{T} consecutive lines contains 4 integers, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{K}$:
 - $1 \leq \mathbf{X}, \ \mathbf{Y}, \ \mathbf{Z} \leq 10$, dimensions of the titanium block.
 - $0 \leq \mathbf{K} \leq min(\overline{5}0, \ \mathbf{X} imes \mathbf{Y} imes \mathbf{Z})$, how many \mathbf{m}^3 of titanium the spaceship can carry.

Output

For each \mathbf{X} , \mathbf{Y} , \mathbf{Z} and \mathbf{K} , print the minimum total cost needed to cut the titanium block, in order to make it possible to transport exactly $\mathbf{K} \mathbf{m}^3$ of titanium.

Example

Input:

Output:

21			
10			
16			
10			
10			

Explanation:

First Case:

- The block whose dimension is 2 2 2 can be cut into two pieces. (2 2 2 -> 1 2 2 and 1 2 2). The cost of that move will be 16.
- The block whose dimension is 1 2 2 can be cut into two pieces. (1 2 2 -> 1 1 2 and 1 1 2). The cost of that move will be 4.
- Then, the block whose dimension is 1 1 2 can be cut into two pieces. (1 1 2 -> 1 1 1 and 1 1 1). The cost of that move will be 1.
- To solve this optimally we will use a block of ${\bf 1}$ 2 2 with a block of ${\bf 1}$ 1 1.($(1\times 2\times 2+1\times 1\times 1=5={\bf K}))$

The total cost will be **21**.

Third Case:

- The block whose dimension is **1 3 3** can be cut like following: **1 3 3** -> **1 3 1** and **1 3 2**. The cost of this move will be **9**.
- The block whose dimension is 1 3 1 can be cut like following: 1 3 1 -> 1 1 1 and 1 2 1. The cost of this move will be 1.
- To solve this we will need a block of **1 1 1**. $((1 \times 1 \times 1 = 1 = \mathbf{K}))$

In the end, we can acquire **1 1 1** cube. The total cost will be **10**.