Titania

Time Limit: 2.0s Memory Limit: 256M

Șehmettin Ltd. Co. is in the interstellar titanium transportation business. They rent spaceships that can carry $\mathbf{K} \mathbf{m}^{3}$ of titanium. The company only produces rectangular prism shaped titanium blocks of size $\mathbf{X} \times \mathbf{Y} \times \mathbf{Z}$. So, to transport titanium, you may need to cut the titanium block multiple times.

In one move you can cut the titanium block either from width, length or height into 2 titanium blocks. The dimensions of newly created titanium blocks must be integers (e.g. a [$5 \times 6 \times 7$] block might be cut into [$5 \times 2 \times 7$] and [$5 \times 4 \times 7$] sized 2 blocks, but it cannot be cut into $[5 \times 1.5 \times 7$] and $[5 \times 4.5 \times 7]$ sized 2 blocks). However, titanium is a hard metal to cut; therefore, the cost of cutting the titanium block is the square of cut surface area (e.g. if a $[5 \times 6 \times 7$] sized block is cut into [$5 \times 2 \times 7$] and [$5 \times 4 \times 7$] sized 2 blocks its cutting cost will be $(5 \times 7)^{2}=1225$).

Your job as an employee of Șehmettin Ltd. Co. is to find the minimum total cost of cutting titanium blocks for given $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ and \mathbf{K} values.

The ship can transport multiple titanium blocks but the total volume of the blocks should be \mathbf{K}.(e.g. if the initial block is $[2 \times 2 \times 2$] sized and if \mathbf{K} is 5 , the ship can either transport $1[2 \times 2 \times 1]$ block with a $[1 \times 1 \times 1]$ block or it can transport $5[1 \times 1 \times 1]$ blocks)

The remaining ($\mathbf{X} \times \mathbf{Y} \times \mathbf{Z}-\mathbf{K}$) \mathbf{m}^{3} of titanium does not necessarily form a single rectangular prism.

Input

- The first line contains $\mathbf{1}$ integer, \mathbf{T} :
- $1 \leq \mathbf{T} \leq 10^{4}$, The number of test cases.
- Each one of the \mathbf{T} consecutive lines contains $\mathbf{4}$ integers, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{K}$:
- $1 \leq \mathbf{X}, \mathbf{Y}, \mathbf{Z} \leq 10$, dimensions of the titanium block.
- $0 \leq \mathbf{K} \leq \min (50, \mathbf{X} \times \mathbf{Y} \times \mathbf{Z})$, how many \mathbf{m}^{3} of titanium the spaceship can carry.

Output

For each $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ and \mathbf{K}, print the minimum total cost needed to cut the titanium block, in order to make it possible to transport exactly $\mathbf{K} \mathbf{m}^{3}$ of titanium.

Example

Input:

3

2225
2224
1331

Output:

21

16
10

Explanation:

First Case:

- The block whose dimension is $\mathbf{2} 2 \mathbf{2}$ can be cut into two pieces. (2 22 -> $\mathbf{1} 22$ and $\mathbf{1} 2$ 2). The cost of that move will be $\mathbf{1 6}$.
- The block whose dimension is 122 can be cut into two pieces. (1 22 -> 112 and 11 2). The cost of that move will be 4.
- Then, the block whose dimension is $1 \mathbf{1} 2$ can be cut into two pieces. (1 12 -> 111 and 11 1). The cost of that move will be $\mathbf{1}$.
- To solve this optimally we will use a block of 122 with a block of 11 1.($(1 \times 2 \times 2+1 \times 1 \times 1=5=\mathbf{K}))$

The total cost will be 21.

Third Case:

- The block whose dimension is $\mathbf{1} \mathbf{3} \mathbf{3}$ can be cut like following: $1 \mathbf{3} \mathbf{3 - >} \mathbf{1} \mathbf{3} 1$ and $\mathbf{1} 3$ 2. The cost of this move will be 9 .
- The block whose dimension is 131 can be cut like following: 131 -> 111 and 12 1. The cost of this move will be $\mathbf{1}$.
- To solve this we will need a block of $11 \mathbf{1}$. $((1 \times 1 \times 1=1=\mathbf{K}))$

In the end, we can acquire 111 cube. The total cost will be 10.

