Şehmettin Ltd. Co. is in the interstellar titanium transportation business. They rent spaceships that can carry $K \ m^3$ of titanium. The company only produces rectangular prism shaped titanium blocks of size $X \times Y \times Z$. So, to transport titanium, you may need to cut the titanium block multiple times.

In one move you can cut the titanium block either from width, length or height into 2 titanium blocks. The dimensions of newly created titanium blocks must be integers (e.g. a $[5 \times 6 \times 7]$ block might be cut into $[5 \times 2 \times 7]$ and $[5 \times 4 \times 7]$ sized 2 blocks, but it cannot be cut into $[5 \times 1.5 \times 7]$ and $[5 \times 4.5 \times 7]$ sized 2 blocks). However, titanium is a hard metal to cut; therefore, the cost of cutting the titanium block is the square of cut surface area (e.g. if a $[5 \times 6 \times 7]$ sized block is cut into $[5 \times 2 \times 7]$ and $[5 \times 4 \times 7]$ sized 2 blocks its cutting cost will be $(5 \times 7)^2 = 1225$).

Your job as an employee of Şehmettin Ltd. Co. is to find the minimum total cost of cutting titanium blocks for given X, Y, Z and K values.

The ship can transport multiple titanium blocks but the total volume of the blocks should be K. (e.g. if the initial block is $[2 \times 2 \times 2]$ sized and if K is 5, the ship can either transport 1 $[2 \times 2 \times 1]$ block with a $[1 \times 1 \times 1]$ block or it can transport 5 $[1 \times 1 \times 1]$ blocks)

The remaining $(X \times Y \times Z - K) \ m^3$ of titanium does not necessarily form a single rectangular prism.

Input

- The first line contains 1 integer, T:
 - $1 \leq T \leq 10^4$, The number of test cases.
- Each one of the T consecutive lines contains 4 integers, X, Y, Z, K:
 - $1 \leq X, Y, Z \leq 10$, dimensions of the titanium block.
 - $0 \leq K \leq min(50, X \times Y \times Z)$, how many m^3 of titanium the spaceship can carry.

Output

For each X, Y, Z and K, print the minimum total cost needed to cut the titanium block, in order to make it possible to transport exactly $K \ m^3$ of titanium.

Example

Input:
Explanation:

First Case:
- The block whose dimension is 2 2 2 can be cut into two pieces. (2 2 2 -> 1 2 2 and 1 2 2). The cost of that move will be 16.
- The block whose dimension is 1 2 2 can be cut into two pieces. (1 2 2 -> 1 1 2 and 1 1 2). The cost of that move will be 4.
- Then, the block whose dimension is 1 1 2 can be cut into two pieces. (1 1 2 -> 1 1 1 and 1 1 1). The cost of that move will be 1.
- To solve this optimally we will use a block of 1 2 2 with a block of 1 1 1. (£1 × 2 × 2 + 1 × 1 × 1 = 5 = K)

The total cost will be 21.

Third Case:
- The block whose dimension is 1 3 3 can be cut like following: 1 3 3 -> 1 3 1 and 1 3 2. The cost of this move will be 9.
- The block whose dimension is 1 3 1 can be cut like following: 1 3 1 -> 1 1 1 and 1 2 1. The cost of this move will be 1.
- To solve this we will need a block of 1 1 1. (£1 × 1 × 1 = 1 = K)

In the end, we can acquire 1 1 1 cube. The total cost will be 10.