Magical Tower Sequences

Time Limit: 2.0s **Memory Limit:** 256M

Yusuf is a mighty wizard and he gets his power from magical tower sequences. A magical tower sequence is a sequence of \(n \) magical towers in a row.

Let's assume that the height of the \(i \)-th tower is \(A_i \). Let's say that tower \(j \) is visible from tower \(i \) if tower \(j \) is strictly higher than all towers between tower \(i \) and tower \(j \) (not including the \(i \)-th tower). More formally, let \(S \) be the range of all towers between \(i \)-th and \(j \)-th tower. This means that \(S = [i + 1, j - 1] \) if \(j > i \), and \(S = [j + 1, i - 1] \) otherwise. The \(j \)-th tower is visible from the tower \(i \) if \(\forall k \in S, A_j > A_k \).

Let \(B_i \) be the number of towers visible from tower \(i \) (not including tower \(i \)). Yusuf calls a sequence of towers lucky if \(A_i = B_i \) for all \(i \). Yusuf wants you to find the number of lucky sequences of \(n \) towers modulo prime number \(m \).

Input

The first line contains 2 integers \(n \) and \(m \).

- \(2 \leq n \leq 1000 \)
- \(10^7 \leq m \leq 10^9 \), \(m \) is prime.

Output

Print one number, the number of lucky sequences of \(n \) towers modulo \(m \).

Example

Input:

```
7 47774477
```

Output:

```
3
```

Explanation

Lucky sequences are \([1, 2, 2, 2, 2, 2, 1], [2, 2, 3, 2, 3, 2, 2], [2, 3, 2, 4, 2, 3, 2] \).