Problem About Base

Time Limit: 1.0s **Memory Limit:** 256M

Sinan is studying base arithmetic at his math course. His teacher, promises him a candy for each given number to be rewritten in the base ${\bf K}$. Sinan wants all the candies and for that, he needs your help.

For a number to be rewritten in the base K:

$$\mathbf{N} = \mathbf{a_n} \cdot \mathbf{K^n} + \mathbf{a_{n-1}} \cdot \mathbf{K^{n-1}} + \ldots + \mathbf{a_1} \cdot \mathbf{K^1} + \mathbf{a_0} \cdot \mathbf{K^0}$$

Sinan needs to write the numbers as a series consists of $\mathbf{a_i}$'s without unnecessary 0's at the beginning for candies.

Input

The first line consists of integer **q**.

Next ${f q}$ lines will contain integers N_i and K_i .

Batch #1:

- $1 \le \mathbf{q} \le 100$
- $1 \leq \mathbf{N_i} \leq 100$
- $2 < K_i < 10$

Batch #2:

- $1 \le q \le 10^4$
- $1 \le N_i \le 10^{18}$
- $2 \le \mathbf{K_i} \le 10$

Output

Print ${f q}$ lines. Each line should contain ${f N}_i$ in base ${f K}_i$, the list of ${f A}$.

Samples

Input:

2

5 2

7 3

Output:

101			
21			

Input:

Output:

25 121 221

Explanation

1. Output

- $5 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ $7 = 2 \cdot 3^1 + 1 \cdot 3^0$